Industrial pigment holds the key to advancing spintronics

Press Release, 10 June  2008

Commonly used industrial dyes hold the key to advancing the new science of 'spintronics', say researchers working on a new a £2.5 million study. Spintronics holds out the possibility of a range of future applications, such as quantum computing, which aims to deliver secure, low-power computers capable of processing much larger quantities of data than is currently possible. Scientists believe that sensitive new biosensors able to analyse blood or urine samples rapidly and accurately could also be developed as a result of this work.

The new Basic Technology grant awarded by the Engineering and Physical Sciences Research Council will support research into the magnetic properties of metal atoms found in industrial dyes such as Metal Phthalocyanine (MPc), a blue dye used in clothing. The team from the London Centre for Nanotechnology - a joint venture between Imperial College London and University College London - and the University of Warwick believes that finding ways to control and exploit these molecules will allow spintronics to be applied in new ways.

The science of spintronics focuses on storing, processing and receiving information by using magnetic fields, electrical currents, light and microwaves to control the spin of electrons. In contrast, conventional electronics, such as those in the integrated circuits of computers or mobile phones, do this by controlling the electrical charge of electrons rather than their spin.

Spintronics has the potential to significantly increase the amount of information a computer can store and process, because spin gives an electron two fundamental states instead of one - spin up and spin down. This means that information can be stored in arbitrary combinations of these two states, dramatically increasing the amount of information each electron can encode.

While spintronics can already be found in computer hard drives, which rely on magnets to store and read information, implementing it more widely in conventional electronics to process information is difficult. This is because the inorganic semiconductors such as silicon currently used in conventional electronics are not magnetic, except at very low temperatures, and therefore cannot control electron spin.

In order to advance spintronics, materials which combine both magnetic and semiconducting properties need to be found. The researchers believe that MPc, which is an organic semiconductor, holds the answer, and now aim to exploit the spin inherent in its metal atoms. Previous research carried out by this team has already demonstrated that spins in MPc can interact and these interactions can be switched – such switching is the first step towards use in information storage and logic operations.

The organic semiconductors to be used by the team for spintronics are very similar to those successfully used in solar cells and LEDs for ultra-flat wide screen TVs with low power consumption, and which are leading the way into cheap 'plastic electronics'. This means that the benefits of organic semiconductors will be spread to more components of everyday electronics products such as computers and mobile telephones. Dr Sandrine Heutz from Imperial College London and the London Centre for Nanotechnology, said:

"Molecules incorporate many different functionalities necessary for spintronics, are cheap and can be processed easily. We believe they could have a real edge in the quest for smaller, faster, and more energy efficient devices."

The grant will also enable research into the use of molecular spintronics to develop highly sensitive biosensors. The team believes that when subjected to microwaves the metal atoms in MPc will display different magnetic interactions with different chemicals. This could pave the way for sensing devices able to rapidly and accurately identify chemicals such as drugs in blood or urine samples.

Dr. Chris Kay, a biologist from University College London who is also working in the London Centre for Nanotechnology said:

“Our proposed plastic bio-assay together with inexpensive microwave technology should, for certain biological problems, put straightforward few-molecule sensitivity within the reach of far more laboratories than currently available methods.”

Professor Tim Jones, from the University of Warwick concludes: 

“Organic electronics has evolved very rapidly over the last 2 decades, from research to practical devices. We are delighted that this award will enable us to explore a new range of applications.”

For further information please contact:

David Weston
Media Relations Manager
UCL Development & Corporate Communications Office,
 Tel: +44 (0) 20 7679 7678
Out of hours: +44 (0) 7917 271 364

Notes to editors:
1. About Imperial College London

Imperial College London - rated the world's fifth best university in the 2007 Times Higher Education Supplement University Rankings - is a science-based institution with a reputation for excellence in teaching and research that attracts 12,000 students and 6,000 staff of the highest international quality.

Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture. Website:

2. About the London Centre for Nanotechnology

The London Centre for Nanotechnology is a joint enterprise between University College London and Imperial College London. In bringing together world-class infrastructure and leading nanotechnology research activities, the Centre aims to attain the critical mass to compete with the best facilities abroad. Furthermore by acting as a bridge between the biomedical, physical, chemical and engineering sciences the Centre will cross the 'chip-to-cell interface' - an essential step if the UK is to remain internationally competitive in biotechnology. Website:

3. About University College London

Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender, and the first to provide systematic teaching of law, architecture and medicine. In the government's most recent Research Assessment Exercise, 59 UCL departments achieved top ratings of 5* and 5, indicating research quality of international excellence.

UCL is in the top ten world universities in the 2007 THES-QS World University Rankings, and the fourth-ranked UK university in the 2007 league table of the top 500 world universities produced by the Shanghai Jiao Tong University. UCL alumni include Marie Stopes, Jonathan Dimbleby, Lord Woolf, Alexander Graham Bell, and members of the band Coldplay.

4. About University of Warwick

The University of Warwick is one the UK's leading research universities. In the last Research Assessment Exercise, Warwick was ranked fifth in the UK for research quality, with 25 of its 26 academic departments gaining the highest ratings; departments awarded the top 5* rating were Applied Mathematics, Statistics, Economics, Warwick Business School, English, and Theatre Studies. Over 90% of Warwick’s academic staff are research active.

5. About EPSRC

The Engineering and Physical Sciences Research Council (EPSRC) is the UK’s main agency for funding research in engineering and the physical sciences. The EPSRC invests around £800 million a year in research and postgraduate training, to help the nation handle the next generation of technological change. The areas covered range from information technology to structural engineering, and mathematics to materials science. This research forms the basis for future economic development in the UK and improvements for everyone’s health, lifestyle and culture. EPSRC also actively promotes public awareness of science and engineering. EPSRC works alongside other Research Councils with responsibility for other areas of research. The Research Councils work collectively on issues of common concern via Research Councils UK. Website address for more information on EPSRC:

Attached image
Update this image alt text please