UCL forges new research links with China in nanospintronics

The London Centre for Nanotechnology – a joint venture between UCL and Imperial College London – is taking a strategic lead in the emerging field of nanospintronics, by initiating collaborative projects with research groups at China’s top two universities, Peking University and Tsinghua University. The projects aim to develop radically new approaches to miniaturization of computer systems, based on the exploitation of special magnetic “spin” properties of individual molecules and single atoms.


The two projects, which were awarded to LCN researchers as well as scientists from the University of Surrey in the UK, and Beijing University and Tsinghua University in China, focus on ‘silicon-based spintronics’ and ‘molecular nanospintronics’. These projects were selected as part of a call for collaborative UK-China research projects in nanospintronics, issued by the UK’s Engineering and Physical Sciences Research Council and the Natural Science Foundation of China.

Traditional electronics exploits the electronic charges in metals, semiconductors, and superconductors to construct a broad range of omnipresent devices, with applications ranging from computation and transmission of data to medical diagnostics. In the past two decades, scientists and engineers have begun to take advantage of the magnetism that is also an inherent property of charge carriers. Often referred to as “spintronics”, technology based on the interplay between charge and spin offers revolutionary new functionality including non-volatility in data storage, higher sensitivity in sensors, and reduced energy consumption.

The projects aim for an in-depth understanding of the nanoscale electronic, magnetic, and structural properties of novel spintronic systems made from ultra-small silicon and organic structures.  Recent advances in scanning probe microscopy, pioneered by the team’s members, have enabled the exploration of these systems at the single atom or molecule scale. When combined with the team’s expertise in the growth and fabrication of organic thin-film devices, this knowledge will enable the development of new device paradigms.

The two spintronics projects add to UCL’s portfolio of collaborative projects with China. Other recent announcements include an investigation into “Fourth Generation wireless communication”, under the EPSRC’s “UK-China Science Bridges” scheme, and a study of “innovative adsorbents and processes for integrated carbon capture and multi-pollutant control”, under the EPSRC’s scheme for “Collaborative Research with China on Cleaner Fossil Fuels”.